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Abstract. Graph-based machine learning, encompassing Graph Edit
Distances (GEDs), Graph Kernels, and Graph Neural Networks (GNNs),
offers extensive capabilities and exciting potential. While each model pos-
sesses unique strengths for graph challenges, interrelations between their
underlying spaces remain under-explored. In this paper, we introduce a
novel framework for bridging these distinct spaces via GED cost learn-
ing. A supervised metric learning approach serves as an instance of this
framework, enabling space alignment through pairwise distances and the
optimization of edit costs. Experiments reveal the framework’s potential
for enhancing varied tasks, including regression, classification, and graph
generation, heralding new possibilities in these fields.
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1 Introduction

Graph structures have emerged as critical tools for tackling complex challenges
across a range of disciplines, including chemoinformatics [1], bioinformatics [2],
social network analysis [3], computer vision [4], and others. In these fields, intri-
cate relationships can be elegantly represented through graphs, allowing a better
understanding and analysis of complex systems. The benefits of graph structures
are amplified when combined with machine learning techniques, paving the way
for a new era of data exploration and knowledge discovery. In particular, graph-
based machine learning techniques such as graph embedding strategies [5], graph
kernels [6, 7], and Graph Neural Networks (GNNs) [8] have shown promise in
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their ability to harness the complexity and interconnectedness of graph struc-
tures. Benefiting from distinct designs and the ability to capture specific in-
formation, each of these techniques offer their unique strengths and perspec-
tives when addressing graph-related challenges. However, despite the impressive
performance of these models, there remains a critical gap in their application.
Specifically, these models typically project the graph structure into different
spaces, leading to the potential loss of valuable graph properties and operations,
which, in turn, results in a disconnect between the graph space and the learn-
ing technique employed. On the other hand, as stated in [9], the use of metric
distances, such as graph edit distances (GEDs), directly in a graph space is of-
ten practically insufficient, as they are seldom computationally tractable. This
limit drives researchers to embed graphs into other spaces, which reduces the
interpretability of the underlying operations. Moreover, the connections among
these spaces themselves remain unrevealed, keeping the underlying theories and
potential applications behind the mist.

To bridge this gap and to ensure the preservation of the essential properties
and operations of the graph space, the concept of GED can be leveraged [10]. The
key to GED’s utility lies in its ability to operate directly within the graph space,
maintaining the graph’s structural integrity while enhancing the interpretabil-
ity of operations. Additionally, GED allows for the direct construction of new
graphs according to specific edit paths [11], further underscoring its applicability
and usefulness. The successful application of GED necessitates the appropriate
optimization of edit costs, which have a major impact on the computation of
GED and its performance. As the values of edit costs may differ depending on
the data encoded by the graph and tasks, methods for performing this crucial
step are recently trending to a prosperity. Recognizing the need for an improved
approach to bridge graph spaces, we take advantage of these methods and turn
to a more comprehensive exploration of edit costs.

In this paper, we propose a novel framework designed to overcome the exist-
ing challenges of bridging graph spaces. This framework leverages cutting-edge
optimization methods to effectively manage edit costs, thereby enhancing the
applicability and efficiency of GED. The innovative nature of this framework
goes beyond the integration of improved optimization methods. Its true value
lies in its ability to serve as a unifying platform that bridges disparate graph
spaces, bringing together the strengths of various graph learning models while
addressing their shortcomings. This positions our framework as a promising solu-
tion that could advance graph-based machine learning, opening up new avenues
for exploration and application in numerous fields.

The remainder of this paper is organized as follows: Section 2 discusses re-
lated work, including current methods for bridging graph spaces and existing
approaches to edit cost learning. Section 3 presents our proposed framework,
along with a detailed discussion of GEDs and an application of Supervised Met-
ric Learning. Section 4 explores potential applications of the framework, followed
by an examination of our experimental results in Section 5. Finally, we conclude
with a summary of our findings and future work in Section 6.
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2 Related Work

The study between distinct graph-based spaces keeps attracting the attention
of researchers. In this paper we emphasize on spaces induced by GEDs, graph
kernels, and GNNs. In [12], the random walk graph kernel is extended by the
GEDs, where the latter is used to evaluate global matching information to guide
the local similarity evaluation of the kernel. In [13], an approach is proposed to
turn an existing dissimilarity measure (e.g. GED) into a similarity measure, thus
construct graph kernels directly from GED. In [14], GED is applied to encode
the cross information between treelets. In [15], the graph and graph kernel spaces
are aligned through GED to conduct a pre-image problem. Meanwhile, GEDs
and GNNs are often bounded by the optimization of edit costs or learning and
redesign of edit distances [16].

Connections between graph kernels and GNNs have been established in recent
work as well. Graph kernels have be applied in GNN settings as convolutional fil-
ters, first-layer representation selection, and pre-train strategies [17]. In converse,
graph kernels designs inspired by GNNs are proposed as well [18]. Moreover, The
equivalent expressiveness of 1-dimensional Weisfeiler-Leman graph isomorphism
heuristic (1-WL) and GNNs are theoretically exhibited in [19].

Despite the thriving of the field, each proposed model operates only in spe-
cific spaces or with specific machine learning methods. Through the GED cost
learning, however, a universal approach can be systematically established, oper-
ating on multiple graph-based spaces. Various edit cost choosing approaches have
been proposed in the literature. Manual settings are the most straightforward
approach, based on the knowledge on a given dataset/task [20]. To challenge
these settings and adapt the method to situations without such prior knowl-
edge, one can tune the edit costs by grid search. However, the time complexity
of the GED computation and the number of edit costs restrict its usage. Another
commonly-used strategy is to fit edit costs with a particular targeted property,
generally a prediction target. This problem can be seen as a sub-problem of gen-
eralized metric learning, which consists in learning a dissimilarity (or similarity)
measure given a training set composed of data instances and associated targeted
properties. In contrast to a valid metric, a generalized metric or a pseudometric
(e.g. GED), does not strictly adhere to at least one of the following conditions:
non-negativity, identity of indiscernibles, symmetry, positive definiteness, and
triangle inequality [21]. For the sake of brevity, we use the term “metric” to
denote “generalized metric” in this paper.

One set of strategies is based on a probabilistic approach [22]. By providing a
probabilistic formulation for the common edition of two graphs, an Expectation-
Maximization algorithm is used to derive weights applied to each edit operation.
The tuning is then evaluated in an unsupervised manner. However, this approach
is computationally too expensive when dealing with general graphs [23]. Another
class of strategies optimizes edit costs by maximizing the similarity between the
computed mapping and a ground-truth mapping between the vertices of the
graphs [24]. This framework thus requires a ground truth mapping, which is not
available on most datasets such as the ones in the chemoinformatics domain. To
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address this shortcoming, multiple supervised strategies are proposed. In [25],
the edit costs are optimized by minimizing the difference between the GED and
the distances between the prediction targets. While in [26], genetic algorithms
are applied to optimize the costs for classification tasks.

3 Proposed Framework

In this section, we propose first a general framework bridging graph-based spaces
through Graph Edit Cost Learning (GECL), and then an instance of this frame-
work taking advantage of supervised metric learning. With these details, we vali-
date GECL’s innovations in cost learning and graph embedding spaces bridging,
highlighting its versatile applications.

3.1 Graph Edit Distances and Edit Costs

To introduce the GECL framework, we first introduce the necessary preliminaries
of the graph edit distances (GEDs). The GED between two graphs is defined
as the minimal cost associated with an optimal edit path. Given two graphs
G1 = (V1, E1) and G2 = (V2, E2), an edit path between them is defined as a
sequence of edit operations transforming G1 into G2. An edit operation e can
correspond to an insertion, removal, or substitution of vertices or edges. Each
edit operation is associated with a cost characterizing the distortion induced by
this edit operation on the graph. These costs can be encoded by a cost function
c(e) that associates a non-negative real value to each edit operation, depending
on the elements being transformed. The total cost of an edit path π is the sum
of the costs of all edit operations in the path:

c(π) =
∑
e∈π

c(e). (1)

Then, the GED between G1 and G2 is defined as the minimum cost associated
with any possible edit path: the cost of the cheapest edit path:

ged(G1, G2) = min
π∈Π(G1,G2)

c(π), (2)

where Π(G1, G2) denotes the set of all possible edit paths from G1 to G2. The
computation of the exact GED is a NP-hard problem [21]. In practice, a sub-
optimal approximation algorithm is often used and a cost matrix C is often
defined for the edit operations. Then the task of GED computation can be
formulated as an optimization problem that minimizes the total edit cost:

min
π∈Π(G1,G2)

∑
e∈π

Ce. (3)

In the case of G1 and G2, the cost matrix C is expressed as:

C =

[
Cs CrG1

CiG2
0

]
(4)
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e.g.

Fig. 1. The GECL Framework.

where:
- Cs is the n1×n2 substitution cost matrix with elements Csij = cs(viG1

, vjG2
),

i.e., the cost of substituting node viG1
in G1 with node vjG2

in G2.
- CrG1

is the n1 × n1 matrix with diagonal elements CrG1ii
= cr(viG1

), i.e.,

the cost of removing node viG1
in G1; the off-diagonal elements are set to ∞.

- CiG2
is the n2 × n2 matrix with diagonal elements CiG2jj

= ci(vjG2
), i.e.,

the cost of inserting node vjG2
in G2, and off-diagonal elements are set to ∞.

Thus, the matrix C represents all possible edit operations and their associated
costs, which are utilized in calculating the GED.

3.2 The GECL Framework

The cost matrix C plays an important role in GEDs, actively affecting its com-
putation and performance, thus reshaping the structure of the underlying graph
space. Taking advantage of this merit, we propose the GECL framework, and
formalize it as follows (See Fig. 1):

We define a space of graphs G as all possible graphs whose vertex and edge
labels are defined by a label alphabet of a domain. Given a dataset G ⊂ G of
N graphs such that each graph Gk = (Vk, Ek), for k = 1, 2, . . . , N , we define
the set of pairwise GED Mged = {ged(Gi, Gj , Cij) | i, j ∈ 1, 2, . . . , N} as a
metric associated with space G. Meanwhile, we define a target measurement TE
associated with an embedding space E. The GECL framework aims at aligning
the two spaces by optimizing a target function fopt. The problem can then be
formalized as

argC fopt(Mged, TE), (5)

where C = {Cij | i, j ∈ 1, 2, . . . , N} is the set of cost matrices between all pairs
of graphs. After optimizing C, the GEDs are recomputed accordingly.

The measurement TE and the target function fopt endow the possibility of
varied forms. Given TE the distances between prediction targets or ground truths,
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many edit costs optimization strategies fall into this framework, including the
ones introduced in Section 2 (e.g., [26]). In the next section, we take advantage
of a supervised metric learning strategy in [25] and define an instance of the
framework.

3.3 GECL Based on Supervised Metric Learning

In many applications, the cost functions are restricted to constants, namely,
each type of edit operation is associated to a constant value. Let cvs, cvi, cvr,
ces, cei, cer ∈ R be the cost values associated with vertex and edge substitutions,
insertions, removals, respectively. The cost associated with edit operations of an
edit path represented by π is given by:

C(π,G1, G2) = Cv(π,G1, G2) + Ce(π,G1, G2), (6)

where Cv(π,G1, G2) is the cost associated with vertex operations, namely

Cv(π,G1, G2) =
∑
v∈V2

π−1(v)=ε

cvi +
∑
v∈V1

π(v)=ε

cvr +
∑
v∈V1

π(v)̸=ε

cvs, (7)

and Ce(π,G1, G2) is the one associated with edge operations, namely

Ce(π,G1, G2) =
∑

e=(vi,vj)∈E2|
π−1(vi)=ε∨
π−1(vj)=ε∨

(π−1(vi),π
−1(vj))/∈E1

cei +
∑

e=(vi,vj)∈E1|
π(vi)=ε∨
π(vj)=ε∨

(π(vi),π(vj))/∈E2

cer +
∑

e=(vi,vj)∈E1|
π(vi )̸=ε∧
π(vj )̸=ε∧

(π(vi),π(vj))∈E2

ces. (8)

Let nvs = |{vi ∈ V1 | π(vi) ̸= ε}| be the number of vertex substitutions, that
is, the cardinality of the subset of V1 being mapped onto V2. Similarly:

– The number of vertex removals is nvr = |{vi ∈ V1 | π(vi) = ε}|;
– The number of vertex insertions is nvi = |{vi ∈ V2 | π−1(vi) = ε}|;
– The number of edge substitutions is nes = |{e = (vi, vj) ∈ E1 | π(vi) ̸=

ε ∧ π(vj) ̸= ε ∧ (π(vi), π(vj)) ∈ E2}|;
– The number of vertex removals is nei = |{e = (vi, vj) ∈ E1 | π(vi) =

ε ∨ π(vj) = ε ∨ (π(vi), π(vj)) /∈ E2}|;
– The number of vertex insertions is ner = |{e = (vi, vj) ∈ E2 | π−1(vi) =

ε ∨ π−1(vj) = ε ∨ (π−1(vi), π
−1(vj)) /∈ E1}|.

Then, define x = [nvi, nvr, nvs, nei, ner, nes]
⊤ ∈ N6 to represent the count of

each edit operation. It is important to note that these values are dependent on
both graphs under comparison as well as a specified vertex mapping. In a similar
fashion, we create a vector representation c = [cvi, cvr, cvs, cei, cer, ces]

⊤ ∈ R6

to represent the costs associated with each edit operation. With these vector
representations, we can express the cost associated with an edit path, as defined
by (6), in a compact form:

C(π,G1, G2, c) = x⊤c. (9)



Bridging Distinct Spaces in Graph-based ML 7

The GED between two graphs is consequently defined as:

ged(G1, G2, c) = min
π

C(π,G1, G2, c). (10)

In this framework, we assume that each graph Gk ∈ G maps to a specific
element, or “embedding”, fE(Gk) in an embedding space E. Furthermore, a
distance dE : E × E → R is defined over these embeddings. The core principle
of this framework is that the most effective metric in the GED space aligns the
most accurately with the distances within the embedded space (i.e., dE). Guided
by this principle of distance preservation, we aim to determine the edit cost
vector c by aligning the GEDs between graphs with the distances between their
respective embeddings. It is then ideal to preserve the GED between any two
graphs Gi and Gj and the distance between their embeddings (see Fig. 1). That
is to say, given a set of N available graphs G1, . . . , GN and their corresponding
embeddings fEi

, . . . , fEj
, we seek to have

ged(Gi, Gj , c) ≈ dE(fE1 , fEN
) ∀ i, j = 1, 2, . . . N. (11)

Given any pairs of graphs (Gi, Gj) ∈ G and a cost vector c, we can define
xi,j = ω(Gi, Gj , c). Here, ω : G ×G×R6

+ → N6 is the function that computes an
optimal edit path between Gi and Gj according to c, and the vector xi,j ∈ R6

+

denotes the numbers of edit operations associated with this optimal edit path.
Function ω and vector xi,j can be obtained by any method computing an exact

or sub-optimal GED [27]. We further define a matrix X ∈ NN2×6 to gather
the numbers of edit operations for each pair of graphs, where XiN+j,: = xT

i,j .

Namely, the (iN + j)-th row of X is xT
i,j . Consequentially, the product Xc is a

N2×1 vector comprising of edit distances between all pairs of graphs computed
according to c and X. Let the vector d ∈ RN2

the differences on embeddings
according to dE, where d(iN + j) = dE(fE1

, fEN
). With these definitions, the

optimization problem can be expressed as

argmin
c

L(Xc,d) subject to c > 0, (12)

where L denotes a loss function and the constraint on c ensures non-negative
costs. Besides this constraint, one can also integrate a constraint to satisfy the
triangular inequality, or one to ensure that a removal cost is equal to an insertion
cost [28].

By defining the loss function L as the mean square error between computed
GEDs and dissimilarities between the embeddings, the optimization problem can
be rewitten as:

argmin
c

||Xc− d||22 subject to c > 0. (13)

Solving this constrained optimization problem estimates c which allows to lin-
early fit GEDs to a specific target embedding space according to the edit paths
initially given by ω. However, changes to the edit costs may affect the optimal
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Algorithm 1.1 Optimization of constant edit costs according to given embed-
dings

1: c← random(6)
2: X← [ω(G1, G1, c) ω(G1, G2, c) · · · ω(GN , GN , c)]⊤

3: while not converged do
4: c← argminc ||Xc− d||22, subject to c > 0
5: X← [ω(G1, G1, c) ω(G1, G2, c) · · · ω(GN , GN , c)]⊤

6: end while

edit path, and consequently its description in terms of the number of edit op-
erations. This leads to an interdependence between the function ω computing
an optimal edit path according to c, and the objective function optimizing c
according to edit paths encoded within X. To address this interdependence, we
propose an alternated optimization strategy, summarized in Algorithm 1.1 (See
the example shown in Fig. 1). The two main steps of the algorithm are:

- Estimate c for fixed X (refer to line 4 in Algorithm 1.1): The given
optimization issue is a constrained linear problem, which can also be viewed
as a non-negative least squares problem [29]. This step linearly optimizes the
constant costs for a specified set of edit operations between each graph pair,
which is done by minimizing the difference between GEDs and the distances
between their corresponding embeddings. Several readily available solvers can
be used to tackle this problem, such as CVXPY [30] and scipy [31].

- Estimate X for fixed c (refer to line 5 in Algorithm 1.1): As discussed
before, the changes made to costs in the preceding step may affect the associ-
ated edit path. To account for this, we follow up the cost optimization with a
re-calculation of the optimal edit paths in line with the newly computed c vec-
tor which encodes the edit costs. Any method capable of computing GED can
accomplish this step. For efficiency, one might opt for an approximated version
of GED [27].

These optimization steps are alternately repeated to compute both edit costs
and edit operations until the loss value no longer decreases or a iteration number
limit is reached. Since the theoretical convergence proof of this optimization
scheme has yet not been proposed, we limit the number of iterations to 5 in our
implementation, which turns out to be sufficient in the conducted experiments.

The embeddings of the graphs and the distances between them may vary
according to the embedded spaces. We consider the following embeddings in the
rest of the paper:

– For a target space, the corresponding embeddings are the targets themselves.
Since a target space Y is often a vector space, some off-the-shelf distances
on Y are:

• The Euclidean distance: dY(yi, yj) = ∥yi − yj∥2.
• The Manhattan distance: dY(yi, yj) = ∥yi − yj∥1.

we use the Euclidean distance in our experiments.
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– For a graph kernel space H, the distance between two elements ϕ(Gi) and
ϕ(Gj) in H is

dH(ϕ(Gi), ϕ(Gj)) =
√
k(Gi, Gi) + k(Gj , Gj)− 2k(Gi, Gj), (14)

where k(Gi, Gj) is a graph kernel between graphs Gi and Gj .
– For GNNs, we construct the embedding space by extracting the activations

before the last layer. As these embeddings are often vectors or tensors, we
apply Euclidean and Manhattan distances to them as well.

4 Applications of The Framework

The proposed Graph Edit Cost Learning (GECL) framework promises applica-
tions on varied tasks:

Predictions: Leveraging the interrelated spaces in graph structures, GECL can
potentially introduce knowledge learned by other machine learning models (e.g.,
graph kernels, GNNs), thus improving the predictability and accuracy of GED-
based prediction models on both regression and classification tasks.

Graph generation: With the learnt knowledge encoded in the edit costs, GECL
can advance the generation of graphs. Specific areas of focus include median
graph generation, which benefits from enhanced graph space understandability,
and the pre-image problem, which benefits from the connection with the graph
kernel space. Furthermore, the generation of Matching-Graphs [11] can be refined
through the GECL framework, broadening its application scope.

Graph Matching Problems: GECL opens up new possibilities in addressing graph
matching problems by providing a comprehensive view of the graph spaces. It
may facilitate the detection and matching of similar patterns across disparate
graphs, thereby enhancing the resolution of such problems.

Incorporation of Multi-level Information: the integration of the information at
the node and graph level becomes more seamless with the GECL framework.
A straightforward strategy would be to set the embedding space as the one of
graph-level representations (e.g., vectors).

These potential applications foresee an exciting potential of powering the
field of graph-based machine learning by the GECL framework.

5 Experiments

In this section, we exhibit the usage of our framework on two distinct applica-
tions: prediction tasks including regression and classification, and a graph pre-
image generation task. First, we introduce the datasets used in the experiments.
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Table 1. Results on each dataset in terms of RMSE for regression and accuracy (in %)
for classification, measured on the test sets. The “-” notation indicate that the method
is not suitable for the dataset.

Datasets Random Expert Target Path Treelet WLSubtree GCN GAT

Alkane 13.4±3.5 10.6±1.6 5.9±0.7 6.4±0.8 5.9±0.7 8.2±1.2 7.4±0.8 8.2±1.0
Acyclic 29.2±4.4 30.4±3.8 15.0±3.6 13.0±3.6 16.8±3.1 14.3±3.6 14.0±3.3 14.6±3.5

Redox ∆GPBE0
red 25.3±9.5 36.2±13.3 24.8±7.0 20.1±5.8 19.4±5.5 22.1±6.2 26.1±6.4 21.0±6.0

Redox ∆GPBE0
ox 24.4±7.1 40.0±11.5 26.8±10.1 26.4±6.1 25.8±7.8 26.7±6.3 28.5±8.4 26.9±7.8

MAO 80.0±9.9 74.3±10.6 80.0±13.8 81.4±9.7 81.4±10.8 84.3±7.5 84.3±7.5 87.1±10.2
PAH 69.0±11.4 71.0±9.2 68.0±8.1 68.0±7.4 74.0±6.0 71.0±10.9 67.0±11.2 68.0±6.6

MUTAG 80.0±7.1 81.6±6.2 78.9±6.6 82.6±6.2 84.7±5.5 81.1±6.7 80.0±5.8 80.5±5.9
Monoterpens 71.4±3.9 71.7±5.2 70.7±6.3 71.0±5.5 70.0±5.2 72.4±5.3 70.3±6.3 69.7±5.6
PTC MR 56.3±7.1 56.0±4.4 59.4±4.7 55.7±6.0 55.1±5.8 60.0±3.2 57.4±8.3 54.0±5.4
Letter-high 84.3±8.7 84.3±2.4 91.8±0.9 90.1±2.1 - - 82.6±1.2 82.6±1.2

5.1 Datasets

We conducted experiments5 on benchmark datasets through multiple fields.
Four datasets are evaluated for the regression problem: Alkane and Acyclic
are molecule dataset associated with the boiling point prediction. Redox is the
newly generated small molecule dataset aiming at predicting the Redox poten-
tial, where Redox ∆GPBE0

red and Redox ∆GPBE0
ox represent respectively the reduc-

tion and oxidation potential targets6. Six datasets associated with classification
problems are considered. MAO, PAH, MUTAG, Monoterpens, and PTC MR are
chemical molecules associated with different classification problems. Letter-high
involves graphs of highly distorted letter drawings where the task is to classify
each graph to the proper letter. These datasets cover unlabeled graphs, graphs
with discrete and continuous vertex attributes and edge attributes.

5.2 On Prediction Tasks

To evaluate the predictive power of GED empowered with knowledge of different
target spaces, we used a k-nearest-neighbors regression model [32], where k is the
number of the neighbors considered to predict a property. The performances are
estimated on ten different random splits. For each split, a test set representing
10% of the graphs in the dataset is randomly selected and used to measure the
prediction performance. A 5-fold cross-validation (CV) procedure is performed
on the remaining 90%. Pairwise distances in the embedded space are computed
on the training fold, and then the edit costs are optimized accordingly, and the
value of k is optimized through the CV over the candidate values {3, 5, 7, 9, 11}.
The number of iterations to optimize the edit costs is fixed to 5. The GEDs
are estimated by the bipartite heuristics [27]. Three graph kernels (i.e., path
kernel, treelet kernel, and WL-subtree kernel) and two GNNs (i.e., GCN and

5 https://github.com/jajupmochi/ged-cost-learn-framework/tree/master/.
6 We thank the COBRA lab (Chimie Organique Bioorganique : Réactivité et Anal-
yse) and the ITODYS lab (Le laboratoire Interfaces Traitements Organisation et
DYnamique des Systèmes) for providing this dataset.
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GAT) are applied to derive embeddings. The proposed optimization procedure
is compared to two other edit costs settings: the first is a random set of edit
costs; the second is a predefined cost setting given in [27], namely the so-called
expert costs with cvi = cvr = cei = cer = 3, cvs = ces = 1.

Table 1 shows the average root mean squared errors (RMSE) obtained for
each cost settings over the 10 splits, estimated on the test set. The ± sign
gives the 95% confidence interval computed over the 10 repetitions. The first
four datasets are associated with regression problems, where lower values in-
dicate better results; while the remaining datasets are for classification tasks,
with higher values indicating better performance. The best prediction for each
dataset over all methods is marked green and bold. As expected, a clear and
significant gain in accuracy is obtained by using the proposed framework to in-
troduce knowledge from embedded spaces. Compared with using random and
expert costs, the improvements can be up to 57% for regression problems and
17% for classification problems. Five best performances are achieved by treelet
kernels, two by WL-subtree kernel, one by path kernel, one by GAT, and two
directly on prediction targets. For regression problems, optimizing edit costs
through prediction targets can achieve better results than random or expert
costs in most cases. When embedded spaces are considered, further precision
can be achieved. For classification problems, using prediction targets cannot op-
timize the edit costs in general. This is due to the fact that the targets (i.e.,
classes) are symbolic values and even boolean for binary classification. As a re-
sult, the corresponding distances have limited values (e.g., only one and zero in
the case of binary classification). The only exception is on Letter-high, which may
due the fact that there are 15 classes on this dataset, thus providing more infor-
mation for the metric learning. Meanwhile, methods using random and expert
costs are beaten by applying embedded spaces on all these data sets in accuracy.
This promising result confirms the hypothesis that the edit cost optimized by
embedded spaces can capture their underlying information, and thus improve
the prediction accuracy while still operating in the graph space.

5.3 Graph Generations: A Pre-image Example

By fixing the embedding space as a kernel space, we align the distances in it
and graph space as proposed in Section 3.3. The pre-image problem can then
be recast as a graph generation problem [21]. We first optimize edit cost con-
stants according to the embedded kernel space, and then we use these optimized
edit costs, and take advantage of recent advances where the proposed iterative
alternate minimization procedure (IAM) allows generating new graphs [33]. We
choose the Letter-high dataset to show the potential of our method. Spaces de-
rived from two graph kernels are chosen as the embedded spaces, namely the
shortest path kernel and the structure shortest path kernel. The choice is made
on the fact that these two graph kernels can tackle continuous vertex attributes.
Notice that this specific application is already exhibited in our previous work
[15], which serves here as an illustration of the capabilities of our framework.
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Table 2. Distances dE in embedding spaces computed using different methods.

Embedding Spaces From median set Random costs Expert costs Optimized costs (ours)

Shortest Path (SP) 0.406 0.467 0.451 0.460
Structural SP (SSP) 0.413 0.435 0.391 0.394
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Fig. 2. Pre-images constructed by different algorithms for Letter-high with shortest
path (SP) and structural shortest path (SSP) kernels.

Table 2 shows the distance dE between generated graphs and the “true”
median graphs in embedding spaces. “from median set” is a reference method
which takes the set median graph from a graph set as the pre-image of its median.
Our framework produces smaller or competitive dE compared to other methods.
Moreover, the advantage of our framework can be evaluated from a more intuitive
aspect. Fig. 2 presents the pre-images generated as the median graphs for each
letter in the Letter-high dataset using the aforementioned methods, Vertices are
drawn according to coordinates determined by their attributes “x” and “y”. In
this way, plots of graphs are able to display the letters that they represent, which
are possible to be recognized by human eyes. When using the shortest path (SP)
kernel (first to fourth rows), it can be seen that when the expert and optimized
costs are used, almost all letters are readable, compared to the first two methods,
despite that the pre-images of letter F are slightly different (the third and fourth
rows). The same conclusion can be derived for the structure shortest path kernel
as well (fifth to eighth rows). This analysis indicates that the proposed algorithms
are able to generate better pre-images, especially when edit costs are optimized.
It provides a “direction” to construct pre-images with respect to the features
and structures of graphs. The experiment effectively showcases the capabilities
of the GECL framework in handling graph generation tasks.

6 Conclusion and Future Work

In this paper, we proposed the GECL framework which combines the varied
graph-based spaces. We showed that this framework has the potential to learn
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knowledge from embedded spaces by optimizing the edit costs of GEDs. A spe-
cific case based on supervised metric learning was proposed as an example to
show the power of the framework. Experiments on two different tasks were
performed, namely regression and classification predictions and the pre-image
problem. Both results showed that the GECL framework outperforms the meth-
ods using predefined experts edit costs, bringing promising possibilities to these
fields.

In this paper, we only exhibit a special example of the framework. While
multiple state-of-the-art metric learning strategies and edit cost learning algo-
rithms can be included in the framework, it would be interesting to tackle their
abilities. Furthermore, as described in Section 4, exploring the application of the
framework in more tasks would be a substantial work to do. Finally, we plan to
seek out deeper underlying relationships between different graph-based spaces
through a deep study of this framework.
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27. Abu-Aisheh, Z., Gaüzère, B., Bougleux, S., Ramel, J.Y., Brun, L., Raveaux, R.,
Héroux, P., Adam, S.: Graph edit distance contest: Results and future challenges.
Pattern Recognition Letters 100, 96–103 (2017)

28. Riesen, K.: Structural pattern recognition with graph edit distance. In: Advances
in computer vision and pattern recognition. Springer (2015)

29. Lawson, C.L., Hanson, R.J.: Solving least squares problems. SIAM (1995)
30. Diamond, S., Boyd, S.: Cvxpy: A python-embedded modeling language for convex

optimization. The Journal of Machine Learning Research 17(1), 2909–2913 (2016)



Bridging Distinct Spaces in Graph-based ML 15

31. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Courna-
peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al.: Scipy 1.0:
fundamental algorithms for scientific computing in python. Nature methods 17(3),
261–272 (2020)

32. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric re-
gression. The American Statistician 46(3), 175–185 (1992)
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